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Knotted closed-curve solutions of the equation Qf self-induced vortex motion are 
studied. It is shown that there are invariant torus knots which translate and rotate 
as rigid bodies. The general motion of ‘small-amplitude ’ torus knots and iterated 
(cabled) torus knots is described and found to be almost periodic in time, and for 
some, but not all, initial data, the topology of the knot is shown to be invariant. 

1. Introduction 
The equation of self-induced motion of a vortex filament in an ideal fluid is known 

to have a rich solution structure. It is known that this equation can be re-expressed 
in the form of the nonlinear Schrodinger equation to which the inverse scattering 
theory can be applied. As a result, for an infinitely long filament there are solitary 
pulse solutions, which correspond to one wrap of a helix around a long cylinder 
(Hasimoto 1972; Lamb 1981). 

The solitary pulse is an example of a translation-invariant solution, but there are 
others. In  fact, the shape of all translationally invariant closed-curve solutions has 
been found and can be expressed in terms of elliptic functions (Kida 1981). These 
solutions are of further interest from a geometrical and topological point of view 
because they are closed knotted curves in space. 

The purpose of this paper is to examine the dynamic behaviour of closed knotted 
vortex filaments. We shall examine the translationally invariant knotted filaments 
as well as those which are not invariant. Specifically we shall study the dynamic 
behaviour of small-amplitude torus knots and certain iterated (cabled) torus knots. 

The knotted solutions found here are constructed using regular perturbation 
arguments, and rigorous proofs of their existence can be given using the implicit 
function theorem. The key insight to using a perturbation method is to realize that 
a knotted curve can bifurcate from a circular curve if the solution of the underlying 
linear operator has the correct behaviour. For example, a trefoil knot can be viewed 
as a curve on a torus with winding number 3/2 (three wraps around the small radius 
of the torus for two wraps around the large radius). As the small radius of the torus 
is allowed to go to zero, the trefoil knot becomes a twisted multiple cover of a circle. 
Since a circle has constant curvature and zero torsion, bifurcation of a trefoil knot 
from a circle occurs if the deviation of the curvature from a constant and the torsion 
oscillate sinusoidally three times as the circle is traversed twice. Once this structure 
is understood, the construction of knots follows from standard perturbation 
arguments . 

The invariant knots have been found completely and exactly (Kida 1981) by 
taking advantage of the special nature of the governing equations. The emphasis in 
this paper is on perturbation methods, which allows the study of equations of motion 
which do not have such a nice structure. Of course, being based on small parameter 
expansions, the method used here cannot find large-amplitude solutions. 
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The outline of this paper is as follows. In  the next section we discuss the equation 
of motion under consideration, specifically the equation describing the motion of a 
vortex filament in an ideal fluid. We show some calculations that allow us to study 
the evolution of the curvature and torsion without reference to the extrinsic 
coordinate description of the filament, and reformulate the Frenet-Serret equations 
into a form that is relatively easy to study. In $3, we show how closed knotted curves 
in space can be found as solutions of the FrenetSerret equations using perturbation 
methods. In  $4 we show that the model equations have some special solutions, 
namely invariant torus knots that move in space as rigid bodies. These invariant 
solutions have been found previously using a different formulation of the problem 
(Kida 1981). In 9 5 we study the general evolution of torus knots, and show the sense 
in which this motion can be viewed as a superposition of two of the simpler invariant 
knots as building blocks. It is also shown that the topology of these torus knots is 
invariant as a function of time. Finally, in $6, we study the dynamics of the simplest 
iterated torus knots, showing that their motion can be viewed as a superposition of 
four invariant torus knots. That is, the simple invariant torus knots behave like 
‘solitons ’ which can be superposed to construct knots with more complicated 
topology. For these knotted curves, conditions can be prescribed so that the topology 
is invariant, but there are also initial configurations for which there are self- 
intersections of the curve, changing its topology. 

Numerical simulations of the knotted solutions described here have been done and 
are displayed graphically on a VHS format video tape, available on loan from the 
author for short periods of time. 

2. The equations of motion 
A curve R in three-dimensional space can be described in terms of its tangent, 

normal, and binormal vectors, T, N ,  and B, respectively, through the Frenet-Serret 
equations (Stoker 1969) R, = A T ,  A = lRzl,) 

T, = KAN, 
N,  = A (  - K T + ~ B ) ,  
B, = -TAN, 

where K and 7 are the local curvature and torsion, respectively, of the curve. Without 
loss of generality, we can take A to be independent of x, so that the total length of 
the curve is A times the variation of the independent variable x, and the arclength 
coordinate for the curve is s = Ax. 

If the curve moves in space, its motion can be described by the equation 

R, = yT+aN+PB. (2.2) 
The functions a and P are determined by the physics of the problem, but y is 
completely arbitrary since tangential velocity corresponds only to a motion of the 
underlying coordinate description of the curve, not to a change of shape of the curve. 
The parameter y is usually chosen so that a particular coordinate system, such as 
arclength coordinates, is preserved along the curve. Furthermore, y can always be 
chosen so that A remains independent of x for all time. Adding an arbitrary constant 
to y in no way changes the shape of the solution curve 

A simple example is the case a = 0,  /3 = K ,  describing the self-induced motion of a 
vortex filament in an ideal incompressible fluid. We suppose that there is a thin 
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vortex tube in an incompressible fluid to which non-zero vorticity is confined. We 
take the tangent to the filament to be the unit vector with the same direction as the 
vector of the vorticity in the tube. In  the limit of an infinitely thin tube, it can be 
shown (Batchelor 1967; Lamb 1981) that  the velocity of the tube is proportional to 
KB, where K is the curvature of the tube and B is its binormal vector, There is some 
difficulty with the derivation of this equation, since in the limit of a long infinitely 
thin tube, logarithmic singularities arise from the nature of the approximation, and 
to get rid of these unbounded logarithmic terms, a logarithmic change of timescale 
is made. Improvements to the model, taking into account small but finite viscosity 
and core size, have been made (Callegari & Ting 1978). However, for this paper, we 
take as our model of vortex motion the equation (2.2) with a = 0, /3 = K .  

Another example is the equation governing the motion of a vortex filament in a 
superfluid. This equation is given in Schwarz (1985, 1988) as 

(2.3) R, = CKB+ V,+aTX (V,-CKB)-bTX ( T X  (V,-CKB)), 
where V ,  and V ,  are the velocities of the superfluid and the normal fluid, respectively. 
The parameters a and b are temperature-dependent parameters which measure the 
frictional force exerted by the normal fluid on the vortex line. a and b are small 
numbers that have been measured experimentally, and numerical values are 
reported in Schwarz (1985). For example, a t  temperature of 1 K, a = 0.006 and 
b = 0.003 while at temperature of 1.5 K, a = 0.073, and b = 0.018. 

If we rewrite the vector V ,  as V,  = (V,. T )  T+ (V, .N)  N +  (V, -B)  B, it follows that 
the equation of motion (2.3) is equivalent to 

R, = V ,  + b V ,  + (1 - b )  CKB+ aTX ( V,  -CKB). (2.4) 

In a coordinate system moving with velocity E + b K ,  this equation takes the form 
of (2.2) with 

a =  U ( K - K * B ) ,  /?=C( l -b)K+a(V, .N) .  (2.5) 
Notice that in the case a = 0, these expressions reduce to a = 0, /3 proportional to K .  

It is our goal to study the behaviour of closed curves which evolve according to 
(2.2). One easy example is a circle. That is, if there is a value of curvature K = K~ for 
which a = 0 when T = 0, then the circle of radius ro = 1 / ~ ~  moves without change of 
shape in the direction normal to the plane of the circle with velocity P, evaluated a t  

To find other solutions is is helpful to express (2.2) in a more convenient form. We 
wish to find the shape of solution curves without reference to a specific coordinate 
system, and so we seek equations of motion for the curvature and torsion that do not 
make reference to the position vector R.  To this end, we suppose the space curve R 
has velocity specified by (2.2). To find equations of motion for curvature and torsion 
we differentiate R, in (2.2) with respect to x ,  and R, in (2.1) with respect to t ,  and 
set RZt = Rtz. We find that 

(2.6) 

A ,  = yz-aKA, 12.7) 

and = vN+uB, (2.8) 

K = KO, 7 = 0. 

(AT), = (y,-aKA) T+(aX+yrcA-T/3A)N+(/3,+aa7A) B, 
Since T is a unit vector for all time, T. K = 0, from which it follows that 

(2.9) 
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Equation (2.7) determines how the coordinate system must change, and if A = 1, this 
determines how to maintain arclength coordinates. If we are looking for solutions 
that are invariant, it is appropriate to preserve the arclength as the independent 
length variable, but to  study the general motion of a closed vortex filament, total 
length may not be preserved, and so requiring A = 1 would be incorrect. 

with respect to  x and T, with respect to t ,  and set 
T,, = qx, to find that 

Next, we differentiate 

(KAN), = - KWA T +  (w, -TuA) N+ (u, + TWA) B. (2.10) 

Since N is a unit vector, N and Nt are orthogonal, so that 

( K A ) ,  = w z - 7 7 u A ,  (2.11) 

and Nt = -wT+zB,  (2.12) 

(2.13) 
U 

KZ = 7 W - k 2 .  A where 

Since T - B  = 0, and N - B  = 0, it follows that B, -N = -N , ,B ,  and B,. T =  - q .  B, so 
that 

Bt = -uT-zN, (2.14) 

and ( 7 ~ 4 ) ~  = 2, + K d .  (2.15) 

In  summary, if a and are the normal and binormal velocities, respectively, of a 
moving curve, then the curvature, torsion and tangential velocity y evolve according 
to 

@A), = w x - 7 d ,  (7A), = z,+KuA, A ,  = y , -a~A , )  
(2.16) I @A), = w x - 7 d ,  (7A), = z,+KuA, A ,  = y , - a ~ A ,  

" X  P X  U X  
2, = -+YK- 'TP ,  U = -++7, KZ = 7 W + - - ,  A A A 

(2.16) 

A 
" X  P X  w = -+y~-77P, u = -+a7, KZ = 7 w + - - ,  A A 

As an example, in the special case a = 0, p = K (which is the problem we shall study 
beginning in §4), (2.16) reduces substantially to  

(K' ) ,  = ( ~ K ~ - ~ T K ~ ) ~ ,  7, = (; -4-2 ),. ZK = K s s + 7 K ( Y - - 7 ) ,  (2.17) 

where y is an arbitrary constant, and (because we can take A = 1) s is the arclength 
coordinate. 

The requirement that  the solution curve be closed adds to further complication. In  
order to know that a space curve is closed we must have that R, the position vector, 
is a periodic function of its arclength coordinate. This implies that the curvature and 
torsion must be periodic, and that 

Jop Tdx = 0, (2.18) 

where P is the period of the periodic solution, and T is the tangent vector to the 
curve R. 

To know that (2.18) is satisfied, one must solve the evolution equations (2.16) 
along with the FrenetSerret equations. Unfortunately, as stated in (2.1), the 
Frenet-Serret equations are not in a particularly convenient form to solve. As 
presented in (2.1), they are a system of twelve equations in twelve unknowns (three 
components for each of four vectors). Since the vectors T, N, and B are unit vectors, 
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it is more convenient to present T and N in spherical coordinates in terms of the four 
angles 8, 7, $, $ (only three of which are independent) as 

cos $ cos 8 cos * cos 7 
(2.19) 

Here 8, 7 are angles in the (z, y)-plane, and $, @ denote inclination out of the (2,  y)- 
plane. That is, the angles 8 and 7 correspond to longitude, and angles $ and $ to 
latitude in a spherical coordinate system. The binormal vector can be expressed in 
terms of these angles since B = T x N. It is convenient to let 7 - 8 = $c + q, and then, 
since T and N are orthogonal, it must be that 

This relationship determines 7 in terms of the three independent angular variables 8, 
4, and $. Now the Frenet-Serret equations can be expressed as three equations in 
terms of the three angular variables 8, $, and $ as 

(sin $), = KA sin 4, 
(sin$), = A ( T c o s $ c o s $ c ~ ~ ~ - K K ~ ~ $ ) ,  

sin $ sin $- cos $ cos + sinq = 0. (2.20) 

(2.21) I 8, = K A  COB COB q/cos 4. 
With the change of variables CP = sin$, and Y = sin@, these equations simplify 
further to 

(2.22) 
AKX 

1-CP2’  
CP, = AKY, Y~ = ~ ( ~ x - ~ a ) ,  er = - 

where X2+@2+ !P = 1 .  

In terms of these variables the vector T has components 

(2.23) 

This completes the formulation of the problem to be solved. To summarize, to find 
closed-curve solutions, we seek spatially periodic solutions of the equations of 
curvature and torsion (2.16).  We must also solve the Frenet-Serret equations (2.22) 
in order to determine the tangent vector T through (2.23),  and finally we require that 
the tangent vector have zero integral as in (2.18) so that the solution curve is closed. 
Throughout the remainder of this paper we shall take a = 0, and #3 = K ,  as for the 
self-induced motion of a vortex filament, in which case the equations of motion for 
curvature and torsion reduce to (2.17). There are many other interesting problems 
with more complicated choices of a and #3 which will not be discussed here (see for 
example Keener 1988a, 1989; Keener & Tyson 1988). 

3. Torus knots 
Our goal in this section is to find solutions of the FrenetSerret equations that are 

closed knotted curves. That is, we want to determine characteristics of the curvature 
and torsion of a curve that guarantee that the curve is closed and knotted. To do so 
we need to understand a few features about knotted curves. 

One of the easiest ways to construct a knot is to wrap a string around a doughnut, 
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or torus. A torus can be described as the cross-product of two circles of radius r1 and 
rp, with rl  > r2 and corresponding angular variables @ and 0 (not to be confused with 
the angles used in the last section to define the tangent and normal vectors). Any 
curve drawn on the surface of a torus has a winding number defined as follows : 

DeJinition 3.1. The winding number for a curve on the surface of a torus, denoted 
as @ = @(x), 0 = 0 ( x ) ,  is the number W = limz+m 0(x) /@(x) .  

In words, the winding number is the average number of wraps of the curve around 
the small radius of the torus per wrap around the large radius. The winding number 
exists and is unique if the curve is not self-intersecting, and is an invariant for the 
curve. That is, if the curve is deformed without self-intersections into another curve, 
the winding number is unchanged. 

The important fact about knots that we will use is Massey (1967). 

THEOREM 3.2. A closed non-self-intersecting curve on the surface of a torus with 
winding number mln, m and n relatively prime, m > n > 1, is  a non-trivial knot. 

A trefoil knot is one with winding number 312, that is, three wraps around the 
small radius of the torus for two wraps around the large radius of the torus. In figure 
1 (a) is shown a left-handed trefoil knot (solid line) with the centreline of a circular 
torus (dashed line) though it. In  figures 1 ( b )  and 1 (c)  are shown 512 (also called the 
Solomon’s seal) and 413 torus knots, respectively. Any knot constructed as a 
wrapping of a torus is called a torus knot, but in the class of all knots, torus knots 
comprise only a very small subclass. In  $6  we shall discuss one class of more 
complicated knots, the cabled, or iterated, torus knots. 

Not that we know how to describe a simple torus knot, the bifurcation picture can 
be explored. How might we construct a torus knot as a solution of a differential 
equation as a bifurcation from a simpler solution curve ? The answer is found by 
examining the opposite question of how a knot might be turned into some simpler 
structure. Notice that if the small radius of a torus is allowed to approach zero the 
torus approaches a circle and the knot becomes an n cover of the circle with the curve 
twisted around itself m times. To undo this collapse we should look for a curve whose 
curvature and torsion oscillate with very small amplitude m times as a circle is 
traversed n times, with m and n relatively prime. 

To see how this works we solve a practice problem. Suppose the curvature and 
torsion of some nearly circular closed curves are known, and suppose that the 
curvature and torsion are small-amplitude oscillatory functions that oscillate m times 
as the circle is traversed n times. We shall show how to find a closed-curve solution 
of the Frenet-Serret equations and that the resulting curve is a torus knot with 
winding number mln. To be specific, we suppose that the curvature and torsion of 
the curve are given by (to leading order in some small parameter e )  

K ( Z )  = ~ ~ + ~ a s i n p x + ~ b ~ o s p x ,  
7 ( x )  = 70 + BC cospx, 

where ,LA = ~,,m/n. Here we take the independent variable x to  vary over the fixed 
interval 0 < x < 2 x n / ~ , .  We seek solutions of the Frenet-Serret equations (2.22) that 
are closed curves for e small, and use A = A(€)  to adjust the total length of the curve 
and 70 = 70(s )  to adjust the average value of torsion so that the curve is closed. 
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FIUURE 1 .  Three examples of torus knots : (a)  a trefoil knot (solid curve) with the central filament 
of its interior torus (dashed); (b)  a 5:2 torus knot (Solomon’s seal); and ( c )  a 4:3 torus knot. 

It is an easy matter to show that closed-curve solutions for this problem exist. In 
fact, using the implicit function (Keener 1988b), one can readily show : 

THEOREM 3.3. Suppose that ~ ~ ( 2 )  and 71(x) are periodic functions of period P ,  and that 
there are integers m and n so that mPKo = 2nz. Suppose further that 

I K , ( X ) C O S K ~ Z ~ ~  = 0, cp 71(s) dx = 0. 

K ~ ( x )  sin K~ x dx = 0, 

7 1 ( ~ ) ~ ~ ~ ~ 0 x d x  = 0, 

“rp 
~ ~ ( 2 )  sin ir,xdx = 0, 

1 (3.2) 

Then for all e suflciently small, there are functions A = A ( € )  and 70 = ~ ~ 7 ~ ( e ) ,  and a 
closed curve whose curvature and torsion are given by 

K(X) = K ~ + ~ K , ( X ) ,  7(x) = ~ 7 ~ ( x ) + e ~ 7 ~ ( e ) .  (3.3) 

The arclength variable for the curve is s = A(E)x. 
The solution of our practice problem and the proof of this theorem follow from a 

straightforward regular perturbation and application of the implicit function 
theorem. We assume that the variables for (2.22) have power series expansions in E 

of the form 
@(x) = “@l(x) + €W2(”) + . . . , 
P(x) = S!q(X)+€2Y2(X)+ ..., 
e(x) = KO x+ ee l (X)  + e2e2(x) + . . . , 

(3.4) 

where A = 1 +Gql+e2A2+ .... For E = 0, this corresponds to a closed circle with 
curvature K ~ .  For small e, the tangent vector is given approximately by 

COS KO X - O,(x) sin K~ x 
(3.5) 

We expand the FrenetAerret equations (2.22) into powers of E and collect like 
powers of e. The leading-order equations are given by 

21 FLM 211 



636 J .  P. Keener 

We seek periodic solutions of (3.6) with period mP = 2 n n / ~ , .  These exist if and 
only if solvability conditions are satisfied, namely, if and only if rl(x) is orthogonal 
to both sin K~ x and cos K~ x on the interval 0 < x < mP, and 

AIKO = -J:p K,(x) dx. (3.7) 

If the average value of K,(x) is zero, we pick A ,  = 0. Furthermore, we require that the 
integral of the tangent vector T be zero. To first order in E ,  this implies that K ~ ( x )  

must be orthogonal to sin K~ x and cos K~ x, and that the average value of rl(x) must 
be zero on the interval 0 < x < mP. 

To carry out the perturbation scheme, we must have enough adjustable free 
parameters to satisfy periodicity requirements a t  each order of the perturbation 
scheme. Two free parameters are necessary. The scale factor A = A ( € )  is used to 
ensure that O(x) is periodic, and the avarage value of r is used to ensure that the 
average value of 4D is also zero. These observations are sufficient to allow us to write 
(2.22),  (2.23) and (2.18) (via a standard use of the Lyapunov-Schmidt technique) in 
a form to which the implicit function theorem can be directly applied, guaranteeing 
that there is a solution of the full problem for all c sufficiently small (Chow & Hale 
1982 ; Keener 1988 b) .  

For the special example (3.1) where the curvature and torsion are simple 
trigonometric functions, we can solve the leading-order equations explicitly. We find 
that the leading order solution is given by 

CL 
O,(x) = --cospx+-sinpx. 

P 

Integrating the tangent vector, we find a position vector R with components rl, 
r2,  r3 given by 

1 

KO 
rl(x) = -sin x cos x sinpx- sin x cospx 

K 

P 

1 
KO 

r2(x) = - - cos K~ x cos x cospx +A sin x sinpx 

I 

(3.9) 

to leading order in E .  At each order in the perturbation calculation, the coefficient Ai 
is used to guarantee that O(x) - K~ x is a periodic function, and the average value of 
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torsion must be adjusted so that the curve is closed. With a bit more work, one can 
show that 

A ( € )  = 1- €262 +.. . ,I  
4 ( 4  -p2)  

(3.10) 

The first of these shows how the length of the curve changes as a function of E .  In  fact, 
since y > K ~ ,  A(€) is greater than one, so that for non-zero E the arclength of the curve 
is 2 n l c A ( ~ ) / ~ ~ ,  which is slightly greater than 2nx/~,.  

Now we can verify that for E small, the curve R is indeed a torus knot. This is done 
by showing that the curve R lies on a torus and by calculating its winding number. To 
see that this is a curve on a torus, we rewrite the curve R(x) in toroidal coordinates 
as R(z )  = R,(t)+a(t) N(t)+P(t)B(t), where Ro(t) is the centreline of the torus, N a n d  
B are the normal and binormal vectors for the centreline Ro(t), and t is some function 
of x. We take the centreline Ro(t) to have components 

1 1 
KO K 

rol(t) = -sinKot, ro2(t)  = --cosKot, ro3(t) = 0, (3.11) 

which is a circle. We choose t as a function of x by requiring that the tangent vector 
of Ro(t) be orthogonal to the vector R(x), that is, rl(x) c o s ~ ~ t + r ~ ( x )  sinKot = 0. It 
follows that 

( b(Ko sin px cos KO(X - t)  - p cos yx sin K 0 ( 2  - t ) )  
t, + y ( K ;  -y2) 

sin K ~ ( X -  

- a ( ~ ~  cosyx cos K ~ ( X  - t )  + y sin yx sin ~ ~ ( z -  t))) = 0, (3.12) 

or to leading order in E , Z  = t. Now, to calculate the coordinate amplitude a(t), we 
note that l - ~ ~ a ( t )  = ~ i R ( x ) . R ~ ( t ) ,  so that 

a(t)  = 
8 

cos yx sin ~ ~ ( x -  t )  - y  sinpx cos KO@- t)) 
P(P2 - 4) 

- b ( K o  s i n y ~  sin Ko(Z- t )  + p  C O S ~ X  cos KO(X-t))], (3.13) 
or to leading order in e, 

c 
a(t) = -7(asinyx+bcospx). (3.14) 

$-KO 

Of course, P(t) is the z-component of R so that 

(3.15) 

The trajectory of the curves a(t), P(t) determines the behaviour of the curve in the 
plane orthogonal to the centreline. This trajectory satisfies the equation 

(3.16) 

It follows that if b and c are non-zero, the curve R lies on a torus with elliptical cross- 
section. Furthermore, it is apparent that the ellipse is traversed in a single direction 
m times for every n times that the circular centreline Ro(t) is traversed, so that the 
winding number is mln, as promised. If b or c is zero, higher-order terms are needed 
to determine if there is rotation about a torus. We can determine from (3.14) and 

21-2 
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(3.15) that the ellipse is traversed in a clockwise direction as x increases if b and c 
have the same signs, corresponding to a right-handed knot. If b and c have opposite 
signs, the ellipse is traversed in the counterclockwise direction so that the knot is left 
handed. We summarize the result of this calculation in 

THEOREM 3.4. Suppose that the functions K ~ ( x ,  E )  and 71(x, E )  are periodic in x with 
period P = 2 n n / m ~ , ,  with mln an  irreducible rational number greater than one. Suppose 
further that 

K ~ ( x , E )  = asinpx+bcospx+O(e), T ~ ( X , C )  = ccospx+O(~),  

with 

For all E sufliciently small there are functions A ( € )  and 7 2 ( ~ )  so that the curve with 
curvature and torsion given by 

K(X) = K o + E K 1 ( X , E ) ,  7(2)  = E71(X,€ )+€272(€ )  

is a closed curve with arclength variable s = A ( € )  x. Furthermore, 

A ( € )  = 1 +e2 C 2  -*)+... , 

bcKO 
7 2 ( E )  = - + ... . 

2(Y2 - 4) 
If bc + 0, the curve R is  a closed torus knot with winding number mln for all non-zero 
E sufliciently small. Furthermore, the knot is  right handed i f  bc > 0, and left handed i f  
bc -= 0. 

4. Invariant knotted vortex filaments 
Now comes the task of determining when (or if) the equations governing the 

structure of a vortex filament have oscillatory curvature and torsion of the correct 
type. This we can do using a standard perturbation analysis. The equations to be 
solved are 

(K')t = (yK2-zT#2)8, T t  = (!$'+Z),, ZK = KS8f7K(Y-7), (4.1) 

where y is an arbitrary constant, and s is the arclength coordinate. 
Because of Theorem 3.4 we know something about the form of the solutions we are 

seeking. First, since we do not yet know the length of the curve it is advantageous 
to make a change of lengthscale in (4.1), allowing us to work on a fixed spatial 
interval keeping the total length of the curve as a free parameter. 

Second, notice that for a periodic solution we can adjust the average value of the 
torsion as we wish. This is because, according to (4.1), the average torsion is a 
constant independent of time, and furthermore, (4.1) are invariant under the 
transformation 

7 * T + 7 0 ,  y * y+yo, 2 * z+ (')'0-270)7+ (y+yo-To) 70,  X * x+ (270-70) t. 
(4.2) 

for arbitrary constants 70 and yo. Thus, we can adjust the average value of torsion 
simply by making a change of spatial coordinate system into the appropriate 
travelling frame of reference. 
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Finally, any small-amplitude solution of (4.1) can be made to correspond to a 
closed-curve solution. This follows since (4.1) are invariant under the transformation 

K * a K ,  7*a7, y*ay,  z *a2z ,  x*x/a, t*t/a2. (4.3) 

Thus, any period-P solution whose curvature has average value K~ can be transformed 
by a change of scale into a period P = aP solution with average curvature K; = U K ~ ,  

and then the restriction on period from Theorem 3.4 that P ' K ~  = 2nn/m is readily 
satisfied with an appropriate choice of a. 

We begin our analysis of (4.1) by looking for invariant solutions, that is, solutions 
of (4.1) that are independent of time. These are travelling wave solutions of (4.1), 
where the speed of translation is given by the unknown constant y. It is convenient 
to work on a fixed spatial interval, so we introduce the change of spatial scale 
s = Ax. The parameter A will be determined by the condition that the curve be 
closed, as given in Theorem 3.4. The resulting equations are 

yK2-27K2 = c,, K 2 + 2 2  = c2, K,, = A 2 ( Z K - 7 K ( Y - 7 ) ) ,  (4.4) 

where the constants C, and C, are undetermined constants of integration. One can 
write (4.4) as a single equation for the quantity u = K', of the form 

u" = A2 (C, + (C,  - ~ 2 )  u - +US),  (4.5) 

where C, is another unknown constant. Exact solutions of this equation can be 
written out in terms of elliptic funct'ions (Kida 1981). For our purposes, however, it 
is more useful to express solutions as perturbations of a constant solution. To do this, 
we observe that K = K ~ ,  7 = 0, z = 0, is a solution of (4.4) for any constant y = yo. To 
see what kinds of spatially periodic solutions are possible in a neighbourhood of this 
constant solution, we linearize (4.4) about the known constant solution and find 

K l z z + ( K i + Y i ) K 1  = C1Yo+CzKo,  Y o K 1 - K o 7 1  = C1, z,+KoK1 = C2, (4.6) 

where K ~ ,  7,, and z1 are the small deviations of K ,  7 and z from the constant solution. 
We pick the constants el = 0, and c2 = 0, so that the average curvature and average 
torsion are zero, and then find that 

K,(x) = a K o  cospx, 71(x) = ay, cospx, (4.8) 

provided yi = p 2 - ~ i .  Here we see exactly the structure for which we had hoped. 
Namely, for any value of p that is a rational multiple of K 0 , , p  = mK,,/n, we can choose 
the speed of translation yo so that y i  = , U ~ - K ; ,  and the solution of the linearized 
equations has curvature and torsion which, according to Theorem 3.4, give rise to an 
m / n  torus knot. 

The calculation of the knotted solution is a standard perturbation calculation (see 
Cole 1968; Keener 19883) which we will not belabour. Since the linearized equations 
have a periodic solution at value yo, we look for periodic solutions of the governing 
equations with y in a neighbourhood of yo. We seek a power series solution of (4.4) 
in powers of some small parameter E of the form 

K(X) = K o + € K O C O S / h X + € 2 K 2 ( X ) + . . .  

7(x) = ey0c0spx+€27,(x)+ ... . (4.9) 
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We know already from the form of this solution and the statement of Theorem 4.3 
that we must take the scale factor A ( € )  and average torsion to satisfy 

(4.10) 

We also expand the parameter y as yo + e2y2 + e4y4 + . . . . 
The perturbation calculation is straightforward in concept, but tedious in details. 

We expand (4.4) in powers of B ,  collect coefficients of like powers of E ,  and then 
solve the resulting hierarchy of equations sequentially. Unknown parameters are 
determined by requiring the solution to be periodic (equivalently, by invoking the 
Fredholm Alternative). This calculation was done using the algebraic programming 
language REDUCE, so we present only the results of the calculation. We find that 

(4.11) 

Taken in conjunction with the results of the previous section, we see that for y in 
a one-sided neighbourhood of yo (determined by the sign of yz) ,  there are closed 
knotted invariant solutions of the equations of motion (4.1). Furthermore, if y is 
positive, the knot is right handed, while if y is negative, the knot is left handed. Note 
that y determines the rate and direction of rotation of the knot about its axis of 
symmetry. That is, y is the speed of translation of the knot along its tangential 
direction. Thus, when y is positive, the knot rotates in the direction of its tangent 
vector, and with y negative, the knot rotates in the direction opposite to its tangent 
vector. In  other words, a right-handed knot rotates in the direction of its tangent 
vector, and a left-handed knot rotates in the direction opposite its tangent vector. 
The orientation of the tangent vector also determines the orientation of the binormal 
vector, and the knot moves as a rigid body in the direction of the binormal to the 
circle which underlies the torus knot. 

5. The dynamics of torus knots 
The calculation of the previous section raises a number of interesting subsidiary 

questions. We have shown that there are torus knots with any winding number that 
move as rigid bodies under the dynamics R, = KB. (Recall that the addition of a 
tangential component to the motion has no influence on the shape of the solution, so 
we do not include a tangential term here.) One would also like to know something 
about the stability of these invariant solutions (Kida 1982). 

The invariant solutions are interesting in that they are a type of solitary structure. 
It is well known that the equations of motion for curvature and torsion (4.1) can be 
transformed into the nonlinear Schradinger equation (Hasimoto 1972 ; Lamb 1981). 
Thus, the invariant knots correspond to spatially periodic invariant travelling wave 
solutions of the nonlinear Schrodinger equation. Since the nonlinear Schrodinger 
equation is completely integrable and has solutions which can be found using the 
inverse scattering transform, we know that the invariant solutions act as solitons and 
can be ' superposed ' to find temporally quasi-periodic, spatially periodic solutions 
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(Tracy & Chen 1988). By analogy we wish to determine how the invariant knotted 
solution curves can be viewed as ‘solitons’ which can be superposed to give closed 
curves which are not invariant and may even have a different topology from the 
invariant torus knots. 

In  this section we shall explore the behaviour of the simplest ‘two-soliton’ 
solutions, and in $6 we study the behaviour of the simplest ‘four-soliton’ solutions. 
As we saw in $4, the simple solitary wave solution corresponds to an invariant torus 
knot that rotates around its axis of symmetry a t  some speed. We also learned that 
for each rational number mln there are left-handed and right-handed torus knots 
that rotate about their axes of symmetry in opposite directions. If we start the 
evolution R, = KB with an arbitrary torus knot, we do not expect the motion to be 
invariant, although the total length will not change and the curve will remain closed. 
We do not know, however, if the topology of the knot will remain the same or if there 
will be self-intersections and crossings of the curve which change its topology. There 
is certainly nothing in the equations of motion that precludes intersections of 
different pieces of the curve, since the equations of motion only take into account 
local effects. 

To get some idea of the evolution of an ‘arbitrary’ torus knot, we seek solutions 
of the evolution equations (4.1). The solutions we find will be periodic in space, and 
small amplitude in their deviation from a circle. We seek solutions of (4.1) using the 
method of harmonic balance (Stoker 1966). Specifically, we suppose that solutions 
can be written in the form 

m \ 

I K ( Z ,  t, e )  = ~ ~ ( t ,  e )  + x d ( ~ ~ ( t ,  e )  eifpz + K?(t, e )  e-ijpz), 
I-1 

m 

5-1 

T ( X ,  t ,  e )  = rO(e)  + C d ( ~ , ( t ,  E )  euw + ~ ? ( t ,  e )  e-+*), 

m 

I-1 

where a superscript asterisk denotes the complex conjugate. We take y = 0, and 
expand A ( € )  into powers of e ,  as required by Theorem 3.4. We substitute (5.1) into 
the (4.1), and collect like exponential terms, to find the equations 

2 i p ( ~ ~  K~ + z2 )  = i&, - + 2 i p ~ ~ r ~  = - 3 i p ~ ~ ~ ~ ,  -- dt dt 
dK2 d72 

(5.4) 

where we have retained only terms up to order e2. 
We can approximate the solutions of these equations using multiscale techniques 
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given in Cole (1968) and Keener (1988b). Setting E = 0 in (5.2) and (5.3), we find that 
the behaviour of the solution to leading order is governed by the equations 

with zo = 70 = 0, and K~ constant. It is no surprise that these equations have two 
linearly independent solution pairs, corresponding to the two invariant solutions 
found in $4. However, the general solution of (5.5) is a linear combination of the two 
solutions, given by 

with K+ and K- arbitrary constants (determined from initial data), and with = 
p 2 ( p 2 - ~ ; ) .  In view of the form of (5.1), this corresponds to the superposition of two 
travelling waves moving in opposite directions with speed u / p  = y .  

To determine the effect of the order-s2 correction terms on this solution, we make 
the usual two-timing assumption, that the behaviour of the solution can be described 
in terms of two timescales, a fast time t, and a slow time a = e2t. We rewrite (5 .2) ,  
(5.3), (5.4) in terms of these two time-like variables by invoking the chain rule and 

d a  a setting 

(5.7) -= dt g+E2-. 
aa 

Now the solution to leading order is given by (5.6), with the modification that K- and 
K+ depend on a, that is, they are slowly varying functions of time. 

The next steps follow standard perturbation arguments. We expand the unknown 
functions as power series in E ,  and then require that the equations of motion have 
solutions that are periodic in the fast variable t at each order of E .  For example, we 
expand Ko(t)  as K~ + E ~ K ~ ~ ( ~ ,  a), and the equation governing ~ ~ ~ ( t ,  a) is 

In addition, we require that the solution curve be closed, and from Theorem 3.4 we 

to leading order in E .  The requirement that  solutions be periodic in t leads to the 
differential equations for the slow evolution of the functions K- and K+, 

where = 3 ~ : + 2 ~ * ,  pz(p) = 2 p 2 ( 3 ~ i - p 2 ) .  

The solution of these equations is now easy to describe. We find that 

(5.9) 

(5.10) 
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where 

Clearly the amplitudes of K+ and K- are constant. It follows that 

(5.11) 

are both constant. 
We need to understand what this tells us about the evolution of torus knots. We 

first observe that the evolution of the curvature and torsion of the knot look very 
much like the superposition of two travelling waves. To this order in e ,  the 
amplitudes of curvature and torsion are not affected by the interaction, but the speed 
of progression of the waves is affected, through the function w 2 ,  by the interaction. 
From the form of (5.1), (5.6), and (5.10), we calculate that the speed of propagation 
of the K+ wave component is 

(5.12) 

with a similar expression for the speed of the K- wave component. These speeds agree 
with the speed of the invariant solution (found in $4) in the case that only one of the 
components is non-zero. 

To understand something about the shape and topology of the knots we make two 
observations. First, from (5.10) we know that the solution curve lies on a torus whose 
large radius is oscillatory, so that the whole torus is 'breathing'. 

Second, by comparing (5.1) and (5.6) with (3.1) we can determine the topology of 
the solution curve. To do so we must determine the appropriate scalars a,  b, and c so 
that the solution (5.1), (5.6) can be written, with a shift of independent variable x ,  
in the form of (3.1). In other words, we must find constants c and a phase shift 0,  so 
that = ceio, and then find a and b so that 2~~ = (b-ia)de. The solution of this 
problem is straightforward. We write 

K~ = I K + ~  eiQ+ + I K - I  ei+-, 0 
T~ = - ( I K - I  ef+-- ~ K + I  @+), (5.13) 

P O  

and calculate that 

(5.14) 

Recalling that lk+l and I K - I  are constant in time, we see that the quantity bc is a 
constant independent of time. From Theorem 3.4 we conclude that if bc =l= 0, the 
topology of the knot is invariant. Therefore, if I K + I  is larger than I K - (  we have a right- 
handed torus knot, while if I K + ]  is smaller than I K - [  we have a left-handed knot, and 
this topology does not change during the course of the motion of the curve. 

It is a bit difficult to visualize the actual motion of the torus know without some 
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-4 -4 r 0 4 

FIGURE 2. Plot of the elliptical cross-section of the torus on which the torus knot is wrapped as 
a function of time. Parameter values are I K + ~  = 2.0, ) K - I  = 1.4, p = 3/2 (a trefoil knot). 

pictures. We know that the torus knot is wrapped on an elliptical torus, and it is easy 
to show that the coordinates of the ellipse are given by 

2 E  

Y 

2s 

YP 

(5.15) I 4 s )  = - , ~ I ~ + I ~ ~ ~ ~ P ~ + $ + ~ + I ~ - I ~ ~ ~ ~ P ~ + $ - ~ ~ ,  

p ( x )  = - - ( I K - I  sin ( , u ~ f $ - ) - l ~ + I  sin (px+$+)). 

In  figure 2 we show the ellipses (5.15) (the cross-section of the torus) with parameter 
values I K + I  = 2.0, I K - I  = 1.5, y = 3/2 (a trefoil knot), and e = +y for a sequence of five 
values of $+-$-. From this sequence of plots, we see that the torus on which the 
knots are wrapped has a cross-section that is a rotating ellipse that is also changing 
its shape as it rotates as a function of time. 

The third aspect of the motion of this curve is that it ‘slides’ on the surface of the 
deforming torus. The sliding motion is easiest to visualize by recalling that P(z) in 
(5.15) is the vertical component of the curve and x is proportional to the angular 
variable of the large circle of the underlying torus. Thus, p(x) represents projection 
of the torus onto a cylinder. Clearly, the function P(x) is the superposition of two 
travelling waves, moving in opposite directions, and this reflects the way in which 
the knot slides along the torus. Of course, if the amplitudes of these two waves are 
quite different, then the curve would appear as one large-amplitude wave moving in 
one direction with a smaller wave sitting on top of the first, moving in the opposite 
direction. 

The full motion of the knot consists of sliding the curve on a torus whose large 
radius is breathing and whose elliptical cross-section is rotating and periodically 
varying as illustrated by figure 2. Finally, the form of the solution suggests that it 
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is quasi-periodic with two basic, but incommensurate, temporal periods (Tracy & 
Chen 1988). Indeed, the two-soliton solution of the nonlinear Schrodinger equation 
to which this solution corresponds is a quasi-periodic period with two basic periods. 
Of course, as higher modes are added to the solution to accommodate general initial 
data, the number of incommensurate periods increases, so that the general solution 
is a t  best almost periodic. For small E ,  however, these perturbations do not change 
the topology of the torus knot. 

6. Cable knots 
Torus knots are the simplest knots that can be constructed as small perturbations 

from circular solutions. In the previous section we constructed a torus knot by 
wrapping a curve on a torus that has been expanded from a central circular filament. 
However, we could have started with any closed curve as the central filament for the 
torus, and wrapped a torus knot on that expanded torus. That is, we could wrap a 
torus knot onto a torus that has as its central filament another knotted curve. In this 
way we construct the so-called cable knots, or iterated torus knots. Of course, the 
process can be repeated as often as desired. We start with a circular central filament, 
expand it to a torus and then wrap a torus knot onto it. We then take the resulting 
knotted curve, expand it into a torus, and wrap another torus knot onto it, and so 
on. Thus a cabled knot can be viewed as resulting from a cascading iteration of torus 
knot bifurcations (Crawford & Omohundro 1984). 

To classify the cabled knots, we keep track of the winding number on each of the 
tori. That is, we have a sequence of winding numbers ml/n, ,  m2/n2, ..., mk/nk, 
describing the torus knot used at each level of the cascade. For ‘small-amplitude’ 
cable knots, we need to determine how the curvature and torsion oscillate as the 
angular variable for the underlying circle is traversed. We know, for example, that 
for a small-amplitude ml/nl torus knot, the curvature and torsion oscillate 
sinusoidally m, times as the underlying circle is traversed n, times. To create a new 
m,/n, torus knot on the first mJn, torus knot, the curvature and torsion must 
oscillate m2 times as the length of the first torus is traversed n, times. That is, the 
curvature and torsion must oscillate m2 times as the original underlying circle is 
traversed n1 n2 times. Therefore, to create cable knots with the sequence of winding 
numbers ml/nl ,  m,/n,, . . ., mk/nk, we look for curvature and torsion with oscillatory 
components having relative frequencies in the ratio 

m3 . . mk .... . 
n1 nln2 n1n2n3 n l n  ,... n, 

As a specific example, a trefoil knot wrapped on a trefoil knotted torus would have 
curvatures with relative frequencies 1 :::a. In figure 3 (a)  is shown a trefoil cabling 
(solid curve) of a trefoil knot (dashed curve). In  figure 3 ( b )  is shown a 512 cabling of 
a 512 torus knot. 

We wish to explore the dynamic behaviour of small-amplitude cabled knots for the 
equations of motion R, = KB. This is equivalent to studying the behaviour of (4.1) 
with many spatially oscillatory modes of comparable amplitude. For this discussion 
we shall limit our investigation to the simplest possible cabling that gives interesting 
results, namely, an m / n  torus knot with an m/2 cabling. The corresponding 
curvature and torsion oscillate with relative frequencies m / n  for the torus knot, and 
m/2n for the cabling. The reason this cabling is mathematically interesting is because 
the two oscillations are nonlinearly resonant a t  the lowest possible order. Other 
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FIQURE 3. (a) A trefoil cabling (solid curve) of a trefoil knot (dashed curve), and (6) a 5/2 cabling 
of a 5/2 knot. 

cablings produce resonances at a higher order and therefore require calculation of 
higher-order terms before interesting nonlinear effects are uncovered. 

The procedure is identical to that in the previous section, except that now the form 
of the assumed solution has more leading-order contributions, being of the form 

m 
K ( Z ,  t ,  E )  = ~ ~ ( t ,  E )  + C d ( ~ ~ , - ~ ( t ,  E )  ei(zj-l)pz + 

where by C.C. we mean the complex conjugate of the previous expression, and 
p / ~ ~  = rn/2n. With the solution expressed in the form (6.1), the components K~ and 
r2 correspond to the first torus knot and the components K~ and 71 correspond to its 
cabling. 

We once again use the method of harmonic balance to expand the system of 
equations (4.1) into a hierarchy of differential equations governing the behaviour of 
the amplitude of each of the modes eifpz. To include the O(e2)-effects, we must keep 
equations for the modes zero to 4 of (6.2). Because they are rather complicated, we 
do not display these equations here, although they are similar in form to (5 .2) ,  (5.3), 
(5.4), but with more terms. 

The leading-order equations are not so complicated. They are 

and their general solutions are 

where 
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For these solutions to be bounded, we must require p > k,. Since p/Ko = m/2n, 
the ensuing analysis does not apply to the cabling of a trefoil knot, for which 
m/2n = 314 < 1. The simplest knot for which this analysis applies is the cabling of 
a 5 /2  knot. 

Now we use the solutions (6.3) as the leading-order terms of a power series 
expansion of the solution, assuming as well that the coefficients q-, K ~ + ,  K ~ - ,  K ~ + ,  are 
functions of the slow time-like variable u = e2t. We expand the equations of motion 
into powers of E, taking into account the chain rule (5.7), and proceed to solve this 
hierarchy of equations, requiring that at  each order of E ,  the solution is a bounded, 
quasi-periodic function oft. We first find the order-s correction to the leading-order 
solution (5.6), and then to obtain a bounded, quasi-periodic order-$ correction it is 
necessary to impose conditions on the slow evolution of the functions K ~ - ,  K ~ + ,  K ~ - ,  

K ~ + .  These are 

where 

4 *1 WZ Q l h  2, Y, 2 )  = *2Pl(P)  w2 - *z P Z ( A  x2 

fc;*1"2Qz(W,x,Y,4 = *1Pl(2L.l)Y2--w,Pz(2~u)~2 

+ (*2 P3(p) - *1 Pa@)) Y2 + (*2 P3(p) + *1 P4@)) 22, 

-k (2W1 Ui  + 8 W 2 p 2 K ; )  W 2  -k ( 2 W ,  U i  - 8wzp2Ki)  X2, 

p l ( p )  and p2(p) are defined in (5.9), and 

p3(p) = $ ( 8 p 4 - 9 p 2 ~ ~ + ~ ~ ) ,  p4@) = 16p4-3~: .  

The solutions of (6.5) are given by 

K, = IK,(O)~ einju o'= 1 - - , 1 + , 2 - - , 2 + ) ,  (6.6) 
with the constants 0, dependent on the constants I K ~ * ( O ) ~  and I K ~ * ( O ) ~ .  Clearly the 
functions J K l f ( a ) l  and ~ K ~ * ( C T ) I  are constants independent of time. The nonlinear 
interaction is evidenced through the complex phases SZ,. 

With the solution expressed in the form of (6.1) it is necessary to determine when 
the corresponding solution curve is closed. For this we must recompute the 
lengthscale A ( € )  and the average torsion, using the procedure of $3. The results of this 
computation are that 

both of which are constant, as expected. 
The motion of the iterated torus knot can now be described in terms of three 

components of its motion. First of all, the underlying circle 'breathes ', as the average 
value of the curvature is given by 

€2 

KO 
K,(t) = K,-- ( K ~ + ( u )  .,*-(IT) eZiw1t +K, - (v )  K,*+(w) e-Ziw1t 

+ ~ ~ + ( u )  K:-(cT) eZiwzt + ~ ~ - ( u )  K:+((T) eziw2t). 
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FIGURE 4. Cross-section of the ellipses on which a 5/2 cabling of a 5/2 torus is wrapped. The small 
ellipses rotate as a function of time around points on the large (dashed) ellipse, which also rotates 
as a function of time. 

Second, the curve is wrapped on in iterated torus, the cross-sections of which are 
rotating ellipses. For example, if the amplitudes of the second mode I K ~ + ( O ) I ,  are 
sufficiently larger than the amplitudes of the first mode I K ~ * ( O ) I ,  then the curve is 
wrapped around a small rotating ellipse, which has as its centre a larger rotating 
ellipse. An example of this configuration is shown in figure 4 where the solid ellipses 
correspond to taking Iq+(O) l  = 0.6, I K ~ - ( O ) I  = 0.3, and the large (dashed) ellipse 
corresponds to I K ~ + ( O ) ~  = 2,  I K ~ - ( O ) I  = 1.5. For this plot, 2 p / ~ , ,  = 5 / 2 ,  corresponding to 
a 5 / 2  cabling of a 5 / 2  knot. If, on the other hand, the amplitudes I K ~ ~ ( O ) I  are much 
smaller than I K ~ + ( O ) ~ ,  then the knot is a simple torus knot with winding number 
p = m/2n. This is because a torus knot is perturbed by a smaller amplitude 
oscillation with relative frequencies of oscillation m/2n : m/n. Because of (6. l) ,  this 
corresponds to a 2m/ l  cabling of an m/2n torus knot, which is merely a perturbation 
of the original torus knot that does not change its topology. 

The third component of the motion is a superposition of four travelling waves 
sliding along the underlying torus structure. The full motion is quasi-periodic with 
four basic periods, as is known from the four soliton solution of the nonlinear 
Schrodinger equation. However, higher-order modes will in general add small- 
amplitude components with additional incommensurate periods, leading to an 
almost periodic motion. For small 8,  however, the topology of the knot will not be 
changed by higher-order corrections. 

The topology of the cabled knot is not always invariant. In  the case suggested by 
figure 4, the topology is invariant if the two smaller ellipses never intersect as they 
rotate and move around the rotating larger (dashed) ellipse. However, if the 
amplitudes of the modes are not sufficiently disparate, so that the two smaller ellipses 
do intersect at some time, then the knotted curve may have self-intersections and 
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pass through itself to change the topology of the knot. When the ellipses separate, 
the original topology of the knot must be restored. The topology of the perturbed 
(but not cabled) torus knot is invariant as a function of time. 

The behaviour of these solutions when there are self-intersections and changes of 
topology cannot be correct for vortex motions of a real fluid. The equations solved 
here include no non-local effects, so the solutions do not feel the influence of self- 
intersections of different parts of the same curve. 

7. Discussion 
Using perturbation arguments we have determined the behaviour of knotted 

solutions of the equation of self-induced motion of a vortex in an ideal fluid. Since 
these solutions are found by perturbation arguments, they are ' small-amplitude ' 
knots, that is, the small radius of the torus about which they are wrapped is of small 
amplitude compared to the large radius of the torus. The structure of these knotted 
solutions for larger amplitudes must be studied numerically, or using a fully 
nonlinear method based on the solvability of the nonlinear Schrodinger equation. 
The difficulty with large-amplitude solutions is finding closed solutions of the 
FrenetSerret equations and determining their topology. Since the motion of the 
filament is governed solely by local features of the filament, there is no way to 
guarantee that a t  larger amplitudes the filaments do not intersect and change their 
topological structure. The fact that the equations of motion include no non-local 
effects is a weakness of the theory. 

We have demonstrated this solution technique for the equation of self-induced 
motion of a vortex filament in an ideal fluid, but the technique of finding small- 
amplitude torus knots is quite general, and knots are easily found as structures which 
bifurcate from rotating invariant circles. This technique has been applied to find 
twisted and knotted scroll rings in excitable media (Keener 1989). The success of the 
method depends entirely on the nature of the normal and binormal velocities a and 
16, which are determined by the physics of a particular problem. If, for a particular 
choice of a and p, there is, first of all, an invariant circle, and secondly, a linearized 
equation that has periodic curvatures and torsions, then standard perturbation 
arguments yield the torus knots. 

Much of the literature on knots deals with their topological features rather than 
with differential equations that may have knotted solutions. Previous studies of 
knots in physical contexts have examined solutions of the Euler elastica in three 
dimensions (Langer & Singer 1984) and the strength of knotted ropes (Maddocks & 
Keller 1987). 

The method presented here finds only torus and iterated torus knots, because there 
is an obvious description of these knots through bifurcation of period-multiplying 
orbits. Another context in which knots play a role is in the study of trajectories of 
autonomous differential equations in R3 (Birman & Williams 1983 a,  b ; Crawford & 
Omohundro 1984; Hockett & Holmes 1987; Holmes & Williams 1985; Holmes 1987). 
If a differential equation in R3 has a periodic orbit, then a bifurcation from this 
periodic orbit to another periodic orbit of higher periodicity may have a knotted 
trajectory. If the eigenvalues of the return map (defined in a neighbourhood of the 
periodic orbit) pass through the unit circle, we knot that there is a bifurcation to a 
flow on an invariant torus. If the flow on this torus has a closed orbit, it  is a knot 
whenever the rotation number for the flow on the torus is non-integer and bigger 
than one (Crawford & Omohundro 1984). In this work, bifurcation of knots was the 
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mechanism that allowed us to construct solutions of our equation, but this does not 
mean that one should expect to see actual vortex filaments bifurcate from one type 
of closed curve to another as some parameter of the flow is changed. 

The topological structure of vortex motion is certainly of interest in the study of 
fluid motion (Moffatt 1969, 1985). However, care must be exercised in trying to 
conclude something from this work about the motion of real fluids. First, the self- 
induction hypothesis requires that different segments of the filament remain 
sufficiently separated so that only local effects need to be included. Because we used 
a perturbation method to write down our knotted solutions, the knotted curves we 
found are very nearly circular and therefore always in violation of the ‘sufficiently 
separated ’ assumption. To overcome this difficulty, one could extend these solutions 
to larger amplitude solutions using numerical techniques or exact methods using 
hyperelliptic functions, and thereby avoid near self-intersections. Alternatively, one 
could hope to apply these results to a superfluid in which interactions between 
different segments of a filament are thought to be important only when the distance 
between two parts of the same filament is on the order of a few angstroms (Schwarz 
1985). A second source of inaccuracy is that the equations solved here do not include 
other important effects of real fluids, such as finite viscosity, or finite vortex core size. 
Modifications of the equation of motion to account for these effects have been derived 
(Callegari & Ting 1978). Since the leading-order behaviour is governed by an 
equation that is completely integrable and for which the solution can, in principle, 
be completely specified, it  may be possible to study the behaviour of the solutions of 
the modified equation using a standard perturbation theory for solitons (Keener & 
McLaughlin 1977 ; McLaughlin & Scott 1978). 

This work was supported in part by NSF grant DMS 8801446. The author is 
indebted to Professors R. Stern, A. Treibergs, and S. Strogatz for valuable 
discussions about knots. 

Note added in proof. The equations (2.17) show that the integrals of the 7 and K~ 

around any closed curve are invariant. From a different (but equivalent) formulation 
of the equations of torsion and curvature (Betchov 1965; German0 1983) one can 
show that the integral of the product T K ~  around a closed curve is also invariant. 
Presumably there are an infinite number of such integral invariants. 
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